La constante du moteur facilite la sélection des moteurs à courant continu dans les applications de contrôle de mouvement. Les moteurs à courant continu avec et sans balais constituent un bon choix pour les applications sensibles à la puissance ou nécessitant une grande efficacité.
Très souvent, la fiche technique d'un moteur à courant continu ou d'un générateur comprendra la constante Km du moteur, qui correspond à la sensibilité du couple divisée par la racine carrée de la résistance de l'enroulement. La plupart des concepteurs considèrent cette propriété intrinsèque du moteur comme une figure de mérite ésotérique utile uniquement au concepteur de moteurs, sans aucune valeur pratique dans la sélection des moteurs à courant continu.
Mais Km peut aider à réduire le processus itératif de sélection d'un moteur à courant continu, car il est généralement indépendant de l'enroulement dans un cas ou une taille de moteur donné. Même dans les moteurs à courant continu sans fer, où Km dépend du bobinage (en raison des variations du facteur de remplissage en cuivre), il reste un outil solide dans le processus de sélection.
Étant donné que Km ne résout pas les pertes dans un dispositif électromécanique dans toutes les circonstances, le Km minimum doit être supérieur à celui calculé pour remédier à ces pertes. Cette méthode constitue également une bonne vérification de la réalité car elle oblige l'utilisateur à calculer à la fois la puissance d'entrée et la puissance de sortie.
La constante du moteur répond à la nature électromécanique fondamentale d’un moteur ou d’un générateur. La sélection d'un enroulement approprié est simple après avoir déterminé un boîtier ou une taille de cadre suffisamment puissant.
La constante moteur Km est définie comme :
Km = KT/R0,5
Dans une application de moteur à courant continu avec une disponibilité de puissance limitée et un couple connu requis au niveau de l'arbre du moteur, le kilométrage minimum sera défini.
Pour une application moteur donnée, le Km minimum sera :
Km = T / (PIN – POUT)0,5
La puissance fournie au moteur sera positive. Le PIN est simplement le produit du courant et de la tension, en supposant qu'il n'y a pas de déphasage entre eux.
NIP = VXI
La puissance du moteur sera positive, car elle fournit de la puissance mécanique et est simplement le produit de la vitesse de rotation et du couple.
POUT = ω XT
Un exemple de commande de mouvement comprend un mécanisme d'entraînement de type portique. Il utilise un moteur à courant continu sans noyau de 38 mm de diamètre. La décision est prise de doubler la vitesse de balayage sans modification de l'amplificateur. Le point de fonctionnement existant est de 33,9 mN-m (4,8 oz-in.) et 2 000 tr/min (209,44 rad/sec) et la puissance d'entrée est de 24 V à 1 A. De plus, aucune augmentation de la taille du moteur n'est acceptable.
Le nouveau point de fonctionnement sera à une vitesse deux fois supérieure et au même couple. Le temps d'accélération représente un pourcentage négligeable du temps de déplacement et la vitesse de balayage est le paramètre critique.
Calcul du Km minimum
Km = T / (PIN – POUT)0,5
Km = 33,9 X 10-3 Nm / (24 VX 1A -
418,88 rad/sec X 33,9 X 10-3 Nm) 0,5
Km = 33,9 X 10-3 Nm / (24 W – 14,2 W) 0,5
Km = 10,83 X 10-3 Nm/√W
Tenez compte des tolérances de constante de couple et de résistance d'enroulement. Par exemple, si la constante de couple et la résistance d'enroulement ont des tolérances de ± 12 %, le pire cas Km sera :
KMWC = 0,88 KT/√(RX 1,12) = 0,832 Km
soit près de 17% en dessous des valeurs nominales avec un bobinage froid.
Le chauffage des enroulements réduira encore davantage le Km puisque la résistivité du cuivre augmente de près de 0,4 %/°C. Et pour aggraver le problème, le champ magnétique s’atténuera avec la hausse des températures. Selon le matériau de l'aimant permanent, cela peut atteindre 20 % pour une élévation de température de 100°C. L'atténuation de 20 % pour une élévation de température de 100 °C concerne les aimants en ferrite. Le néodyme-bore-fer en contient 11 % et le samarium-cobalt environ 4 %.
Fait intéressant, pour la même puissance d'entrée mécanique, si l'objectif est un rendement de 88 %, alors le Km minimum passerait de 1,863 Nm/√W à 2,406 Nm/√W. Cela équivaut à avoir la même résistance d’enroulement mais une constante de couple 29 % plus élevée. Plus l’efficacité souhaitée est élevée, plus le kilométrage requis est élevé.
Si, dans le cas de l'application moteur, le courant maximum disponible et la charge de couple la plus défavorable sont connus, calculez la constante de couple acceptable la plus basse en utilisant
KT = T/I
Après avoir trouvé une famille de moteurs avec un kilométrage suffisant, sélectionnez un bobinage qui a une constante de couple légèrement supérieure au minimum. Commencez ensuite à déterminer si le bobinage fonctionnera de manière satisfaisante, dans tous les cas de tolérances et de contraintes d'application.
De toute évidence, le choix d'un moteur ou d'un générateur en déterminant d'abord le kilométrage minimum dans les applications de moteurs sensibles à la puissance et de générateurs exigeant en efficacité peut accélérer le processus de sélection. L'étape suivante consistera alors à sélectionner un enroulement approprié et à garantir que tous les paramètres d'application et les limitations du moteur/générateur sont acceptables, y compris les considérations de tolérance d'enroulement.
En raison des tolérances de fabrication, des effets thermiques et des pertes internes, il convient toujours de choisir un Km légèrement plus grand que celui requis par l'application. Une certaine latitude est nécessaire car il n'existe pas un nombre infini de variations de remontage disponibles d'un point de vue pratique. Plus le Km est grand, plus il est indulgent pour satisfaire les exigences d'une application donnée.
En général, des efficacités pratiques supérieures à 90 % peuvent être pratiquement impossibles à obtenir. Les moteurs et générateurs plus gros ont des pertes mécaniques plus importantes. Cela est dû aux pertes de roulement, de dérive et électromécaniques telles que l'hystérésis et les courants de Foucault. Les moteurs à balais présentent également des pertes dues au système de commutation mécanique. Dans le cas de la commutation en métal précieux, courante dans les moteurs sans noyau, les pertes peuvent être extrêmement faibles, inférieures aux pertes des roulements.
Les moteurs et générateurs à courant continu sans fer ne présentent pratiquement aucune hystérésis ni perte par courants de Foucault dans la variante à balais de cette conception. Dans les versions brushless, ces pertes, bien que faibles, existent bel et bien. En effet, l'aimant tourne généralement par rapport au fer arrière du circuit magnétique. Cela induit des pertes par courants de Foucault et par hystérésis. Cependant, il existe des versions CC sans balais dans lesquelles l'aimant et le fer arrière se déplacent à l'unisson. Dans ces cas-là, les pertes sont généralement faibles.
Heure de publication : 22 juillet 2021